Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Current status of new research reactor at the Monju Site

Mineo, Hideaki

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(11), p.617 - 621, 2022/11

In December 2016 Decisions were made by the Government on the Fast Breeder Prototype Reactor "Monju", which were decommissioning of the reactor and installation of a new research reactor at the Monju site. After the decisions, MEXT started research to list reactor candidates suitable for the site. Among the candidates, medium power reactor type of which thermal output less than 10,000 kW was chosen to utilize neutron beams. Then, from 2020, MEXT launched an entrusted business and adopted JAEA, Kyoto University and University of Fukui as the core institutions of the business to carry out the conceptual design. This paper describes the system to proceed the conceptual design and to examine the utilization management of the new research reactor and also shows their status.

Journal Articles

Evaluation of fuel reactivity worth measurement in the prototype fast reactor Monju

Ohgama, Kazuya; Takegoshi, Atsushi*; Katagiri, Hiroki; Hazama, Taira

Nuclear Technology, 208(10), p.1619 - 1633, 2022/10

 Times Cited Count:3 Percentile:68.71(Nuclear Science & Technology)

Journal Articles

Evaluation of fixed absorber reactivity measurement in the prototype fast reactor Monju

Ohgama, Kazuya; Katagiri, Hiroki; Takegoshi, Atsushi*; Hazama, Taira

Nuclear Technology, 207(12), p.1810 - 1820, 2021/12

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

Journal Articles

Now is the time of fast reactor

Negishi, Hitoshi; Kamide, Hideki; Maeda, Seiichiro; Nakamura, Hirofumi; Abe, Tomoyuki

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(8), p.438 - 441, 2020/08

Prototype Fast Breeder Reactor, Monju, was under decommission since April, 2018. It is the first time for Japan to make a sodium cooled reactor into decommission. It is significant work and will take 30 years. The Monju has provided wide spectrum and huge amount of findings and knowledge, e.g., design, R&D, manufacturing, construction, and operation up to 40% of full power over 50 years of development history. It is significant to utilize such findings and knowledge for the development and commercialization of a fast rector in Japan.

JAEA Reports

Prototype fast breeder reactor Monju; Its history and achievements (Translated document)

Mitsumoto, Rika; Hazama, Taira; Takahashi, Keita; Kondo, Satoru

JAEA-Technology 2019-020, 167 Pages, 2020/03

JAEA-Technology-2019-020.pdf:21.06MB
JAEA-Technology-2019-020-high-resolution1.pdf:47.3MB
JAEA-Technology-2019-020-high-resolution2.pdf:34.99MB
JAEA-Technology-2019-020-high-resolution3.pdf:48.74MB
JAEA-Technology-2019-020-high-resolution4.pdf:47.83MB
JAEA-Technology-2019-020-high-resolution5.pdf:18.35MB
JAEA-Technology-2019-020-high-resolution6.pdf:49.4MB
JAEA-Technology-2019-020-high-resolution7.pdf:39.78MB

The prototype fast breeder reactor Monju has produced valuable technological achievements through design, construction, operation and maintenance over half a century since 1968. This report compiles the reactor technologies developed for Monju, including the areas: history and major achievements, design and construction, commissioning, safety, reactor physics, fuel, systems and components, sodium technology, materials and structures, operation and maintenance, and accidents and failures.

Journal Articles

Prototype fast breeder reactor "Monju" decommissioning and unloading operation of the fuel assembly from the core

Koga, Kazuhiro*; Suzuki, Kazunori*; Hamano, Tomoharu; Takagi, Tsuyohiko

FAPIG, (194), p.6 - 11, 2018/02

The prototype fast breeder reactor "Monju" was decided to decommission by Japanese government on 21 December 2016. After that, Japan Atomic Energy Agency (JAEA) submitted "Monju decommissioning basic plan" to MEXT (Charge ministry) on 13 June 2017, then the unloading operation period (about 5.5 years) of the fuel assembly, which is the first stage of decommission, has started. Fuji Electric is proceeding with various preparations in cooperation with JAEA for the safe work of the unloading operation. This manuscript introduces the outline of preparation situation such as maintenance and inspection for the unloading operation.

JAEA Reports

Verification of alternative dew point hygrometer for CV-LRT in MONJU; Short- and long-term verification for capacitance-type dew point hygrometer (Translated document)

Ichikawa, Shoichi; Chiba, Yusuke; Ono, Fumiyasu; Hatori, Masakazu; Kobayashi, Takanori; Uekura, Ryoichi; Hashiri, Nobuo*; Inuzuka, Taisuke*; Kitano, Hiroshi*; Abe, Hisashi*

JAEA-Research 2017-001, 40 Pages, 2017/03

JAEA-Research-2017-001.pdf:5.19MB

In order to reduce the influence on a plant schedule of the MONJU by the maintenance of dew point hygrometers, The JAEA examined a capacitance type dew point hygrometer as an alternative dew point hygrometer for a lithium-chloride type dew point hygrometer which had been used at the CV-LRT in the MONJU. As a result of comparing a capacitance type dew point hygrometer with a lithium-chloride type dew point hygrometer at the CV-LRT (Atmosphere: nitrogen, Testing time: 24 hours), there weren't significant difference between a capacitance type dew point hygrometer and a lithium-chloride type dew point hygrometer. As a result of comparing a capacitance dew point hygrometer with a high-mirror-surface type dew point hygrometer for long term verification (Atmosphere: air, Testing time: 24 months), the JAEA confirmed that a capacitance type dew point hygrometer satisfied the instrument specification ($$pm$$2.04$$^{circ}$$C) required by the JEAC4203-2008.

Oral presentation

The R&D Programs of Maintenance Technology for FBR Monju Using the Sodium Engineering Research Facility

Saruta, Koichi; Yamaguchi, Toshihiko; Ueda, Masashi

no journal, , 

Oral presentation

Current status of Monju decommissioning

Nagaoki, Yoshihiro

no journal, , 

no abstracts in English

Oral presentation

Status of MONJU decommissioning Phase 2, 1; Reconsideration of performance maintenance facilities in accordance with the transition to Phase 2 of the MONJU decommissioning plan

Ono, Fumiyasu; Fukushima, Tsubasa; Naruse, Keiji; Matsui, Kazuaki; Obata, Ikuhito; Sawazaki, Hiromasa; Goto, Takehiro; Jo, Takahisa; Uchihashi, Masaya

no journal, , 

By storing fuel assemblies in the fuel pond in Phase 1, MONJU eliminates the residual risk of fuel assemblies remaining in the core, which holds chemically active liquid sodium, and from April 2023, Have moved to Phase 2 of decommissioning. As the decommissioning progresses, plant risks will continue to change. Therefore, we will organize the plant status at each Phase of decommissioning and formulate the concept of performance maintenance facilities for MONJU, which will be necessary in Phase 2, and Performance maintenance facilities were Reconsidered.

Oral presentation

Current status of the new research reactor at the Monju-site and relations with regional society

Mineo, Hideaki

no journal, , 

Decommissioning of Prototype Fast Breeder Reactor (FBR)"Monju"(hereinafter refer to as Monju) was decided by the government in 2016. Government's decision of a research reactor installation in the Monju site was made at the same time. In this paper, chronologies of the decommissioning and the installation decisions, and current status of conceptual design of the research reactor are shown. Involvement of stakeholders to the research reactor installation project is described and discussion in terms of IAEA key principles of stakeholder engagement is given.

11 (Records 1-11 displayed on this page)
  • 1